13 research outputs found

    Many-server queues with customer abandonment: numerical analysis of their diffusion models

    Full text link
    We use multidimensional diffusion processes to approximate the dynamics of a queue served by many parallel servers. The queue is served in the first-in-first-out (FIFO) order and the customers waiting in queue may abandon the system without service. Two diffusion models are proposed in this paper. They differ in how the patience time distribution is built into them. The first diffusion model uses the patience time density at zero and the second one uses the entire patience time distribution. To analyze these diffusion models, we develop a numerical algorithm for computing the stationary distribution of such a diffusion process. A crucial part of the algorithm is to choose an appropriate reference density. Using a conjecture on the tail behavior of a limit queue length process, we propose a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments also show that the diffusion models are good approximations for many-server queues, sometimes for queues with as few as twenty servers

    Many-server queues with customer abandonment

    Get PDF
    Customer call centers with hundreds of agents working in parallel are ubiquitous in many industries. These systems have a large amount of daily traffic that is stochastic in nature. It becomes more and more difficult to manage a call center because of its increasingly large scale and the stochastic variability in arrival and service processes. In call center operations, customer abandonment is a key factor and may significantly impact the system performance. It must be modeled explicitly in order for an operational model to be relevant for decision making. In this thesis, a large-scale call center is modeled as a queue with many parallel servers. To model the customer abandonment, each customer is assigned a patience time. When his waiting time for service exceeds his patience time, a customer abandons the system without service. We develop analytical and numerical tools for analyzing such a queue. We first study a sequence of G/G/n+GI queues, where the customer patience times are independent and identically distributed (iid) following a general distribution. The focus is the abandonment and the queue length processes. We prove that under certain conditions, a deterministic relationship holds asymptotically in diffusion scaling between these two stochastic processes, as the number of servers goes to infinity. Next, we restrict the service time distribution to be a phase-type distribution with d phases. Using the aforementioned asymptotic relationship, we prove limit theorems for G/Ph/n+GI queues in the quality- and efficiency-driven (QED) regime. In particular, the limit process for the customer number in each phase is a d-dimensional piecewise Ornstein-Uhlenbeck (OU) process. Motivated by the diffusion limit process, we propose two approximate models for a GI/Ph/n+GI queue. In each model, a d-dimensional diffusion process is used to approximate the dynamics of the queue. These two models differ in how the patience time distribution is built into them. The first diffusion model uses the patience time density at zero and the second one uses the entire patience time distribution. We also develop a numerical algorithm to analyze these diffusion models. The algorithm solves the stationary distribution of each model. The computed stationary distribution is used to estimate the queue's performance. A crucial part of this algorithm is to choose an appropriate reference density that controls the convergence of the algorithm. We develop a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments also show that the diffusion models are good approximations of queues with a moderate to large number of servers.Ph.D.Committee Chair: Dai, Jiangang; Committee Member: Ayhan, Hayriye; Committee Member: Foley, Robert; Committee Member: Kleywegt, Anton; Committee Member: Tezcan, Tolg

    Many-server diffusion limits for G/Ph/n+GIG/Ph/n+GI queues

    Full text link
    This paper studies many-server limits for multi-server queues that have a phase-type service time distribution and allow for customer abandonment. The first set of limit theorems is for critically loaded G/Ph/n+GIG/Ph/n+GI queues, where the patience times are independent and identically distributed following a general distribution. The next limit theorem is for overloaded G/Ph/n+MG/ Ph/n+M queues, where the patience time distribution is restricted to be exponential. We prove that a pair of diffusion-scaled total-customer-count and server-allocation processes, properly centered, converges in distribution to a continuous Markov process as the number of servers nn goes to infinity. In the overloaded case, the limit is a multi-dimensional diffusion process, and in the critically loaded case, the limit is a simple transformation of a diffusion process. When the queues are critically loaded, our diffusion limit generalizes the result by Puhalskii and Reiman (2000) for GI/Ph/nGI/Ph/n queues without customer abandonment. When the queues are overloaded, the diffusion limit provides a refinement to a fluid limit and it generalizes a result by Whitt (2004) for M/M/n/+MM/M/n/+M queues with an exponential service time distribution. The proof techniques employed in this paper are innovative. First, a perturbed system is shown to be equivalent to the original system. Next, two maps are employed in both fluid and diffusion scalings. These maps allow one to prove the limit theorems by applying the standard continuous-mapping theorem and the standard random-time-change theorem.Comment: Published in at http://dx.doi.org/10.1214/09-AAP674 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Direct Equalization of Multiuser Doubly-Selective Channels Based on Superimposed Training

    No full text
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach

    No full text
    10.1287/mnsc.2018.3145Management Science6594123-4140MSCI

    Optimal Ordering Policy for Inventory Systems with Quantity-Dependent Setup Costs

    No full text
    10.1287/moor.2016.0833MATHEMATICS OF OPERATIONS RESEARCH424979-100
    corecore